RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2018

FIRST YEAR (BATCH 2017-20)

Date : 24/05/2018 Time : 11.00 am - 2.00 pm MATH FOR IND. CHEMISTRY (General) Paper : II

Full Marks : 75

3

2

5

5

[Use one Answer Book for Group A, B & C and another Answer Book for Group-D]

1. Prove that the necessary and sufficient condition for three distinct points with position vectors \vec{a}, \vec{b} and \vec{c} to be collinear is that there exist three scalars *x*, *y* and *z*, not all zero, such that

 $x\vec{a} + y\vec{b} + z\vec{c} = 0$, where x + y + z = 0. 5

2. a) Show that $\vec{\alpha} \cdot \vec{\beta} + \vec{\beta} \cdot \vec{\gamma} + \vec{\alpha} \cdot \vec{\gamma} = -45$, where $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are vectors such that $\vec{\alpha} + \vec{\beta} + \vec{\gamma} = \vec{0}$ and $|\vec{\alpha}| = 7, |\vec{\beta}| = 4, |\vec{\gamma}| = 5$.

b) Find the vector equation of the straight line passing through the points A 1,1,3, B 2,1,4.

- 3. Prove that $\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}$ are coplanar iff $\vec{a}, \vec{b}, \vec{c}$ are coplanar.
- 4. Find the vector equation of the plane passing through three non-collinear points whose position vectors are \vec{a} , \vec{b} and \vec{c} .
- 5. A force of 15 units acts in the direction of the vector $\vec{i} 2\vec{j} + 2\vec{k}$ and passes through the point $2\vec{i} 2\vec{j} + 2\vec{k}$. Find the moment of the force about the point $\vec{i} + \vec{j} + \vec{k}$.

Group-B Answer <u>any five</u> questions [5×5]

- 6. a) State Cauchy's General principal of convergence (for series).
 b) If x
 _n = 1/(1.2) + 1/(2.3) + 1/(3.4) + ... + 1/(n(n+1)), then show that x_n is a bounded monotonic increasing sequence.
- 7. a) Examine the convergence of the series $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{(n-1)!} + \dots$ 3
 - b) State D'Alembert's ratio test for convergence or divergence of a series of positive terms.
- 8. Test for convergence of the series $\sum \frac{n^2 1}{n^2 + 1} x^n$, x > 0.
- 9. If a function f is (i) continuous on [a, b], (ii) derivable on (a, b) and (iii) first order derivative with respect to x i.e. f'(x) = 0 for all $x \in a, b$, then prove that f(x) is constant on a, b.
- 10. If a function f is such that its first order derivative f' is continuous on a,b and derivable on a,b, then show that there exists a number c between a and b such that $f(b) = f(a) + (b-a) f'(a) + \frac{1}{2}(b-a)^2 f''(c)$.

where f''(c) is the second order derivative at the point *c*.

5

2

5

- 11. Show that the maximum value of $x + \frac{1}{x}$ is less than its minimum value.
- 12. Evaluate: $\lim_{x \to 1^{-}} 1 x^2 \frac{1}{\log(1-x)}$.
- 13. Using Lagrange's undetermined multiplier, find the maximum value of x^3y^2 subject to the constraint 5 x+y=1.

Group-C Answer any two questions $[2\times 5]$

- 14. Obtain the reduction formula for $\int \tan^n x \, dx$. Using this formula, obtain the value of $\int^4 \tan^n x \, dx$, where, *n* is a positive integer. 3+2
- 15. From the definition of definite integrals, evaluate $Lt_{n\to\infty} \left\{ \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right\}$. 5
- 16. Show that $\int \frac{dx}{f(x)} = \frac{1}{n!} \left| \log |x| + \sum_{r=1}^{n} -1^{r} C_r \log |x+r| \right| + k$ where, $f(x) = x(x+1)(x+2)\cdots(x+n)$ 5 and k is constant of integration.

Group-D Answer any five questions [5×5]

- 17. a) What is the chance that a leap year selected at random will contain 53 Wednesday? 2 3 Define Random experiment and Mutually exclusive events. b) 18. If two events A and B are independent, show that A and B^{c} are independent and hence that A^{c} and
- Find the value of *K* (constant) such that 19. a)

 B^c are independent.

 $f(x) = Kx \ 1 - x$ for 0 < x < 1= 0elsewhere

is a probability density function.

- A random variable X can assume the values -1,0,1 with probabilities $\frac{1}{3}, \frac{1}{2}$ and $\frac{1}{6}$ respectively. b) Determine the distribution function.
- 20. a) A special un-biased dice with n+1 faces is rolled. It's faces are marked by the number $0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, \frac{n}{n}$. If X denotes the number shown, then find the expectation of X and also find the expectation of $\left(X - \frac{1}{2}\right)^2$.
 - b) What is probability distribution?
- State Poisson distribution. 21. a)
 - A radio active source emits on the average 2.5 particles per seconds. Calculate the probability b) that 2 or more particles will be emitted in an interval of 4 seconds.

21/2

 $2\frac{1}{2}$

4

1

2

3

5 5

5

- 22. If X has Binomial distribution with parameter n (no. of trials) and p (probability of success) then show (i) it's mean is np and (ii) it's variance is npq, where q = 1 p.
- 23. a) If the weekly wage of 10,000 workers in a factory follows normal distribution with mean and standard deviation Rs. 70 and Rs. 5 respectively. Find the expected number of workers whose weekly wages are between Rs. 66 and Rs. 72.

[Given that
$$\frac{1}{\sqrt{2\pi}} \int_{0}^{z} e^{\frac{-t^{2}}{2}} dt = 0.1554$$
 and 0.2881 according as $z = 0.4$ and $z = 0.8$ respectively.] 4

5

1

- b) Explain the statement "Poisson distribution be considered as an approximation of the Binomial distribution".
- 24. a) In a precision bombing attack there is a 50% chance that any one bomb will strike the target. Two direct hits are required to destroy the target completely. How many bombs must be dropped to give a 99% chance or better of completely destroying the target?
 2¹/₂
 - b) A random variable X has the density function $f(x) = \frac{a}{x^2 + 1}, -\infty < x < \infty$

Find the value of *a* and find the probability that X^2 lies between $\frac{1}{3}$ and 1. $2\frac{1}{2}$

_____ X _____